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We present an analysis of the mass of the X(3872) reconstructed via its decay to J/ψπ+π−

using 2.4 fb−1 of integrated luminosity from pp̄ collisions at
√
s = 1.96 TeV, collected with the

CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is
investigated. Within the limits of our experimental resolution the data are consistent with a single
state, and having no evidence for two states we set upper limits on the mass difference between
two hypothetical states. Assuming each state contributes equally to the observed peak, the 95%
confidence level upper limit on the mass difference is 3.6 MeV/c2. Under the single-state model the
X(3872) mass is measured to be 3871.61±0.16(stat)±0.19(syst)MeV/c2, which is the most precise
determination to date.
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PACS numbers: 14.40.Gx, 12.39.Mk, 13.25.Gv

The discovery of the X(3872) [1, 2] and many addi-
tional unexpected states [3] has revived general interest
in spectroscopy in the charmonium mass region. Initial
attempts to explain the X(3872) as a conventional bound
state of a c-quark and an anti-c-quark have shortcomings
[4] which triggered the development of unconventional
explanations. Two popular models are a molecular state
composed of D0 and D̄∗0 mesons [5, 6], and a four-quark
state [7].

In efforts to resolve the nature of the X(3872), several
of its properties have been measured. The first deter-
minations of its mass [1, 2, 8, 9] resulted in values very
close to the D0D̄∗0 mass threshold. The observed width
in these measurements was compatible with zero. Stud-
ies of the X(3872) production properties in pp̄ collisions
[8, 10] suggest that the production mechanisms are sim-
ilar to those for the ψ(2S) charmonium state. Several
measurements constrained the quantum numbers spin
(J), parity (P ) and charge-conjugation parity (C) of the
X(3872). These include evidence for the decay modes
X(3872) → J/ψγ, J/ψω, and ψ(2S)γ [11], and a mea-
surement of the mass distribution of the dipions from
the X(3872) → J/ψπ+π− decay [12]. These measure-
ments indicate an even C parity. A subsequent angular
analysis constrained the quantum numbers to only two
possibilities, JPC = 1++ or 2−+ [13]. A possible fur-
ther decay mode of the X(3872) was identified as a peak
near threshold in the D0D̄0π0 invariant mass spectrum
[14]. Its line shape may reveal information about the in-
ternal structure of the X(3872). Despite efforts on both
the experimental and theoretical sides, the nature of the
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X(3872) still remains an unresolved puzzle.

A measurement of the X(3872) mass with increased
precision can provide crucial information for understand-
ing its nature. Under the hypothesis of a molecular state
the mass of the X(3872) has to be lower than the sum
of the D0 and D̄∗0 masses. The four-quark state hy-
pothesis predicts the existence of two distinct particles
that differ by the light-quark content bound to the cc̄
quarks. These two particles should have slightly differ-
ent masses, and the model of Maiani et al. [7] predicts a
mass difference at the level of 8±3 MeV/c2. Recent mea-
surements of the difference between the X(3872) mass in
B+ → X(3872)K+ andB0 → X(3872)K0 decays [15, 16]
disfavor this model under the hypothesis that one state
is dominantly produced in B+ decays and the other one
in B0 decays.

In this Letter we report a study of the mass of the
X(3872) resonance produced in pp̄ collisions. We con-
sider the conjecture that the structure observed in our
data is composed of two different states with distinct
masses; but failing to discern any evidence for this pos-
sibility we set an upper limit on the mass difference be-
tween two hypothetical states. In light of this result we
perform a precision measurement of the X(3872) mass,
the main result of this paper.

The data were collected by the CDF II detector at the
Fermilab Tevatron pp̄ collider between February 2002 and
August 2007, and correspond to an integrated luminosity
of 2.4 fb−1. The CDF II detector [17] consists of a mag-
netic spectrometer surrounded by electromagnetic and
hadronic calorimeters and muon detectors. The tracking
system is immersed in a 1.4 T axial magnetic field and is
composed of a silicon microstrip detector [18] surrounded
by an open-cell drift chamber (COT) [19]. It extends out
to a radius of 138 cm with up to 96 position measure-
ments in the COT, and achieves a transverse momen-
tum resolution of σ(pT )/pT ≈ 0.15 % pT/(GeV/c). We
detect muons in planes of multiwire drift chambers and
scintillators [20] in the pseudorapidity range |η| ≤ 1.0.
Events with J/ψ → µ+µ− decays are recorded using a
dimuon trigger, which requires two oppositely-charged
COT tracks matched to muon chamber track segments.
The reconstructed invariant mass of a dimuon pair is re-
quired to be between 2.7 and 4.0 GeV/c2.

To reconstruct X(3872) candidates we first build J/ψ
candidates by combining pairs of oppositely charged
muon candidates with a transverse momentum, pT , larger
than 1.5 GeV/c. The X(3872) candidates are formed
by combining J/ψ candidates in the invariant mass range
from 2.95 to 3.25 GeV/c2 with pairs of oppositely charged
tracks, each with pT > 0.4 GeV/c and assigned the pion
mass. We require that all four tracks have at least 10
COT and 2 silicon hits. For the resulting X(3872) candi-
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dates with pT > 3.5 GeV/c, we perform a kinematic fit in
which the tracks are constrained to originate from a com-
mon vertex and the dimuon invariant mass is constrained
to the world average J/ψ mass [21]. Candidates having
a kinematic fit of good quality are selected in a broad
invariant mass range containing, in addition to X(3872)
candidates, also ψ(2S) candidates that decay to the same
final state. The ψ(2S) serves as a valuable control sam-
ple.

Several discriminating quantities are combined by a
neural network into a single selection variable. The in-
dividual quantities are transformed such that linear de-
pendences on the invariant mass are removed. The most
important inputs to the neural network are the Q value
of the decay, defined as Q = mJ/ψπ+π− −mπ+π− −mJ/ψ,
the transverse momenta of the two pions, the quality of
the kinematic fit of the X(3872) candidate, and muon
identification quantities. The offline muon identifica-
tion is based on the matching of tracks found in the
tracking system to track segments in the muon system
and on the energy deposited in the calorimeter by the
muon-candidates. For the training of the neural net-
work, a background sample is extracted from data, se-
lecting events in regions of the J/ψπ+π− mass away from
the X(3872) and ψ(2S) signals. For the signal sample
we use simulated X(3872) events. In the simulation we
generate a singleX(3872) per event using the momentum
distribution of the ψ(2S), which is then decayed using the
evtgen package [22]. Each event is then passed through
a detector simulation based on the geant3 package [23]
and a trigger simulation, and is reconstructed with the
same code as for real data. The simulation is in good
agreement with the data as verified with several kine-
matic quantities. The final selection places a requirement
on the neural network output and the number of candi-
dates per event. Using wrong-sign candidates, where the
two pion candidates have the same charge, we verify that
the selection does not create an artificial excess in the
mass spectrum. The invariant mass distribution of the
selected candidates in the X(3872) mass region is shown
in Fig. 1. The sample contains about 6000 X(3872) sig-
nal events.

Before we perform a mass measurement, we test
whether the signal is consistent with a single state or
we have evidence for more than one state. In the test
we perform a binned maximum likelihood fit to the mass
distribution in data, where we describe the combinatorial
background by a second order polynomial, and the sig-
nal by a nonrelativistic Breit-Wigner function convolved
with a resolution function determined from simulated
events and parametrized by the sum of two Gaussians.
The core Gaussian, with a width of 3.2 MeV/c2, accounts
for two thirds of the resolution function. In the fit we
fix the width of the Breit-Wigner to Γ = 1.34 MeV/c2,
our average of the widths measured in J/ψπ+π− decays
[1, 15]. The uncertainty on Γ of 0.64 MeV/c2 is taken
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FIG. 1: Invariant mass distribution of the X(3872) candi-
dates. The points show the data distribution, the full line is
the projection of the unbinned maximum-likelihood fit, and
the dashed line corresponds to the background part of the
fit. The inset shows an enlargement of the region around the
X(3872) peak.

into account in the hypothesis test described below. As
a test statistic we introduce a factor t that scales the
width of the signal shape. The value of t determined by
the fit to the data is then compared to the distribution of
t from an ensemble of simulated experiments that assume
a single state. Based on this comparison the consistency
of the data with the single-state hypothesis is evaluated.
The pseudoexperiments are generated using the same fit
model as in data. As several quantities are known only
with limited precision, we vary those in the sample gener-
ation according to their uncertainties. The varied param-
eters include background shape parameters, the number
of signal and background events, the width of the Breit-
Wigner function, and the overall width of the resolution
function. From a comparison of the ψ(2S) signal in the
data to that of simulated events we observe that the sim-
ulation underestimates the resolution by about 5%. The
samples were generated with a resolution corrected for
this discrepancy.

From data we obtain a width scale parameter value of
t = 1.052. In Fig. 2 we show a comparison of the fitted
scale parameter to the distribution obtained from simu-
lated experiments assuming a single state. We conclude
that the data are fully consistent with a single state. In
the absence of evidence for two distinct states we set
an upper limit on the possible mass difference between
two hypothetical states. As a test statistic we use the
width scale t, which is compared to expectations from
samples simulated with different mass splittings. We as-
sume that both states have the same mass shape and do
not interfere. We derive upper limits as a function of
the fraction f1 of the lower lying state to the total ob-
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FIG. 2: Distribution of the width scale t for generated ex-
periments using the single state hypothesis (histogram). Also
shown is the measured value from data (vertical line).
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FIG. 3: The upper limit on the mass difference ∆m between
two states as a function of the fraction f1 of the yield of the
lower mass state.

served signal. The resulting 90% and 95% C.L. upper
limits are shown in Fig. 3. For an equal mixture of the
two contributing states, the limits are ∆m < 3.2 MeV/c2

and ∆m < 3.6 MeV/c2 at 90% and 95% confidence lev-
els, respectively. This result is complementary to other
measurements [15, 16] in that it does not rely on assump-
tions about the production of the two hypothetical states
in B+ versus B0 decays.

Lacking any indication of dual states we proceed to
extract the mass of the X(3872) by performing an un-
binned maximum likelihood fit using the same fit model
as used in the previous two-state test. In this fit we fix the
intrinsic width to Γ = 1.34 MeV/c2 and the resolution
parameters to their expected values. Free parameters in
the fit are the mass of the X(3872), the fraction of signal

events in the sample, the overall resolution scale, and two
parameters determining the background shape.

To check the absolute mass scale we use the nearby
ψ(2S) signal in the same J/ψπ+π− invariant mass spec-
trum. We use the identical fit model as for the X(3872),
with the exception that the signal shape parameters are
adjusted to the world average value of Γ = 0.337 MeV/c2

[21] for the intrinsic width, and that resolution param-
eters are determined from simulated ψ(2S) events. The
fit yields mψ(2S) = 3686.03 ± 0.02 MeV/c2. While this
value is consistent with the world average ψ(2S) mass of
3686.09 ± 0.03 MeV/c2 [21], we use the 60 keV/c2 dif-
ference between our measurement and the world average
value as an estimate of a possible uncertainty due to un-
certainties both on our measurement and on the world
average value.

Since a possible miscalibration of the momentum scale
would show up as a dependence of the measured mass on
momentum, we measure the ψ(2S) mass as a function of
several kinematic variables. We find that any tested de-
pendence has an effect below 0.1 MeV/c2, which is taken
as an additional measure of the systematic uncertainty.
This uncertainty is summed in quadrature with the sys-
tematic uncertainty on the absolute mass scale derived
above. To translate the estimation of the mass-scale un-
certainty from the ψ(2S) to the X(3872) we scale the
sum by the ratio of the Q values of the X(3872) and the
ψ(2S) decays. This yields a total systematic uncertainty
of 0.19 MeV/c2 attributed to the momentum scale.

To estimate the effect due to the uncertainties in the
fit model, we refit the data using alternative models.
These include the use of a linear function instead of a
second-order polynomial for the background description,
a single Gaussian function instead of a non-relativistic
Breit-Wigner function convolved with double Gaussian
resolution function for the signal description, and fixing
the natural width Γ to zero or to twice the nominal value.
We also perform a fit in a mass window reduced by 40%.
All of these modifications have a negligible effect on the
fitted mass, below 20 keV/c2, and therefore we do not as-
sign any systematic uncertainty to the measurement due
to the fit model. We assume that the mass line shape is
not distorted by decays to D0D̄∗0. If this were the case,
as discussed in Ref. [24], it would be expected to increase
the measured mass by about 150 keV/c2.

The final mass measurement for the X(3872) is
3871.61 ± 0.16 (stat) ± 0.19 (syst) MeV/c2. The mea-
sured value is in good agreement with the world average
[21] and the new Belle measurement [16]. It is the most
precise single measurement to date and improves the pre-
cision of the world average, including the measurement
described in Ref. [16], by about a factor of 1.5.

Our measurement is below the D0D̄∗0 mass threshold
of 3871.80 ± 0.35 MeV/c2 [21] by 0.19 ± 0.43 MeV/c2.
This implies that the interpretation of the X(3872) as
D0D̄∗0 molecule is still possible, although the current
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precision does not preclude an X(3872) mass above the
D0D̄∗0 mass threshold. A future increase in precision of
this comparison will therefore require improvements in
the precision of the D0 and D∗0 masses. Concerning the
four-quark hypothesis, our data disfavor two hypotheti-
cal states with a mass difference as large as predicted in
Ref. [7].

In summary, we present a new measurement of the
X(3872) mass using its decay to J/ψπ+π−. Our mea-
sured value of 3871.61± 0.16 (stat) ± 0.19 (syst) MeV/c2

is the most precise measurement to date and supersedes
that of Ref. [2]. In addition, we derive upper limits on the
mass difference for the hypothesis of two X(3872) states,
which are predicted by some four-quark scenarios. For
an equal mixture of the two possible states, the limit is
∆m < 3.6 MeV/c2 at 95% confidence level.
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